Chapter Three Network Theorem
-Superposition.
-Thevenen's Theorem

- Norton's Theorem
- Maximum Power Transfer

Superposition Theorem

The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

1. We consider one independent source at a time while all other independent sources are turned off. This implies that we replace every voltage source by 0 V (or a short circuit), and every current source by 0 A (or an open circuit). This way we obtain a simpler and more manageable circuit.
2. Dependent sources are left intact because they are controlled by circuit variables.

Steps to apply superposition principle:
1- Turn off all independent sources except one source. Find the output(voltage or current) due to that active source using the - techniques covered in chapter 1 and 2.
2-Repeat step 1 for each of the other independent sources.
3- Find the total contribution by adding algebraically all the contributions due to the independent sources.

$$
\begin{gathered}
\text { Number of networks } \\
\text { to be analyzed }
\end{gathered}=\begin{gathered}
\text { Number of } \\
\text { independent sources }
\end{gathered}
$$

Example: For the circuit of figure below, use superposition to write an expression for the unknown branch current i_{x}.

Solution: The portion of i_{x} due to voltage source has been designate i_{x}^{\prime} (fig.(b)) to avoid the confusion. And due to current source is $\mathrm{i}_{\mathrm{x}}{ }^{\text {fig.(c). }}$

$$
i_{x}=\left.i_{x}\right|_{3 \mathrm{v}}+\left.i_{x}\right|_{2 \mathrm{~A}}=i_{x}^{\prime}+i_{x}^{\prime \prime}
$$

$$
i_{x}^{\prime}=\frac{3}{6+9}=0.2 A
$$

$$
i_{x}^{\prime \prime}=2 * \frac{6}{6+9}=0.8 \mathrm{~A}
$$

$$
i_{x}=0.2+0.8=1 \mathrm{~A}
$$

Example: Find the current through the 2Ω resistor of the network of figure below, using superposition theorem.

The presence of three sources will result in three different networks to be analyzed.
$I_{1}=I_{1}{ }^{\prime}+I_{1}{ }^{\prime \prime}+I_{1}{ }^{" '}$
$\left.\right|_{1}{ }^{\prime}=$ due to 12 v voltage source.
$\mathrm{I}_{1}{ }^{\prime \prime}=$ due to 6 v voltage source.
$I_{1}{ }^{\prime \prime \prime}=$ due to 3 A current source.

1- For the effect of the $12 v$ voltage source.
$I_{1}^{\prime}=\frac{E_{1}}{R_{1}+R_{2}}=\frac{12 \mathrm{~V}}{2 \Omega+4 \Omega}=\frac{12 \mathrm{~V}}{6 \Omega}=2 \mathrm{~A}$

2- For the effect of the $6 v$ voltage source.

$$
I_{1}^{\prime \prime}=\frac{E_{2}}{R_{1}+R_{2}}=\frac{6 \mathrm{~V}}{2 \Omega+4 \Omega}=\frac{6 \mathrm{~V}}{6 \Omega}=1 \mathrm{~A}
$$

3- For the effect of the 3 A current source.

$$
I^{\prime \prime \prime}{ }_{1}=\frac{R_{2} I}{R_{1}+R_{2}}=\frac{(4 \Omega)(3 \mathrm{~A})}{2 \Omega+4 \Omega}=\frac{12 \mathrm{~A}}{6}=2 \mathrm{~A}
$$

The total current through the 2Ω resistor appears in figure below:

The total current through the 2Ω resistor appears in figure below:

Example: Find the value of I_{o} in the circuit shown below, using superposition.

$$
i_{o}=i_{o}^{\prime}+i_{o}^{\prime \prime}
$$

Where
$\mathrm{i}_{\mathrm{o}}{ }^{\prime}$ is due to the 4A current sourc

i_{o} " is due to the 20 v voltage source.
To obtain i_{o} ', the 20 v voltage source is turned off.

Now, apply mesh analysis in order to obtain $\mathrm{i}_{\mathrm{o}}{ }^{\prime}$.
For mesh 1:-

$$
\begin{equation*}
i_{1}=4 \mathrm{~A} \tag{1}
\end{equation*}
$$

For mesh 2:-
$-3 i_{1}+6 i_{2}-1 i_{3}-5 i_{o}^{\prime}=0$

For mesh 3:-
$-5 i_{1}-1 i_{2}+10 i_{3}+5 i_{o}^{\prime}=0$
At node o,

$$
\begin{equation*}
i_{3}=i_{1}-i_{o}^{\prime}=4-i_{o}^{\prime} \tag{4}
\end{equation*}
$$

Sub. 1, and 4 into 2

$$
\begin{aligned}
& 3 i_{2}-2 i_{o}^{\prime}=8 \\
& i_{2}+5 i_{o}^{\prime}=20
\end{aligned}
$$

which can be solved to get

$$
i_{o}^{\prime}=\frac{52}{17} \mathrm{~A}
$$

To obtain i_{o} ", the 4A current source is turned off.

$$
\begin{aligned}
& 6 i_{4}-i_{5}-5 i_{o}^{\prime \prime}=0 \\
& -i_{4}+10 i_{5}-20+5 i_{o}^{\prime \prime}=0
\end{aligned}
$$

But $i_{5}=-i_{o}^{\prime \prime}$.

$$
\begin{gathered}
6 i_{4}-4 i_{o}^{\prime \prime}=0 \\
i_{4}+5 i_{o}^{\prime \prime}=-20
\end{gathered}
$$

which we solve to get

$$
i_{o}=i_{o}^{\prime}+i_{o}^{\prime \prime}=-\frac{60}{17} \mathrm{~A}
$$

HW

1- Use superposition theorem to find the voltage v in the circuit shown below.

2- For the circuit shown below, find the value of i, using superposition theorem.

3- Use superposition theorem, find the value of v_{o} and i_{o} in the circuit shown below.

4-
Referring to the circuit of Fig. 5.5a, determine the maximum positive current to which the source I_{X} can be set before any resistor exceeds its power rating and overheats.

